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Abstract 

We discuss tensor representations of the Dirac equation using a geometric approach. 
We find that the mass zero Dirac equations can be represented by Maxwell equations 
having a source which obeys the empty space wave equation. We also obtain a relation 
for the source in terms of E and H. In the case of mass not equal to zero a difficulty is 
encountered in removing the constant spinors ,~A and ~a. We find that the arbitrary 
constant spinors can be eliminated in a spinor theory based on the Klein-Gordon 
equation. 

1. Introduction 

Ruse (1937) has obtained a tensorial representation for the spinor Dirac 
equations by making use of  a set of  four linearly independent basis vector 
variables (geometric variables). However, his equations are, unfortunately, 
rather complicated, not exhibiting any simple structure. I t  is with the aim 
of improving on this work that we shall study spinor fields f rom a geometric 
viewpoint. In our geometric approach we find the relation between spinors 
and the Maxwell tensor is generalized from Klauder (1964) to involve the 
trace field (Muraskin, 1969). We find that the Maxwell equations with source 
satisfying the empty space wave equation (Muraskin, 1969) furnishes a 
tensorial representation of the mass zero Dirac equation. By requiring that 
the metric tensor, which is constructed from the spinor field in the manner 
of Ruse (1937), be the Minkowski metric, we obtain a relationship for the 
source of the Maxwell field (trace field) in terms of E and H. 

When we study the mass m case (Whittaker, 1936; Klauder, 1964; 
Cercignani, 1967; Ruse, 1937), we encounter a difficulty in removing the 
constant spinors ~A, ~a from the theory. We find that the arbitrary constant 
spinors can be eliminated in a spinor theory based on the Klein-Gordon 
equation (Marx, 1967). In this situation the tensorial equations are them- 
selves Klein-Gordon equations. 

2. Geometric Variables and Spinor Variables 

We define AaB by 
XA = A BA )(B 

~A = ABA ~B 
3 33 

(2.1) 
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This choice of 2~, ~a, although simple, is not meant to be unique. A uni- 
modular transformation that corresponds to a constant Lorentz trans- 
formation can be performed on the spinor indices. Equations (2.1) and 
(2.2) give 

Xl=All  q~l =A21 
(2.3) 

X2 = A l2  q~ = A22 

In (2.1) Aa~ is interpreted as a transformation that takes Xa, 9a into the 
constant spinors 2A, ~a. We construct from XA, 9a the basis vector variables 

H i = Gi AB q9 A ~OB 
(2.4) 

mi = ai A~ XA cp~ 

rni = al a~ 9)A XB 
We also take 

el* @22 (-m, - r~,) 

1 
e2' = ~/(2)i ( ~ '  - m,) 

(2.5) 1 
e 3, = ~ (hi -- li) 

eO i = 1 (l~ + ni) 

We take the spin metric to be 

•AB= EAB= ( y  1 10) (2.6) 

g~i is defined in terms of the basis vector by 

g~s = e=i e~ j g ~  = li nj + n~ lj - rni rhj - ~ m j  (2.7) 

Since one normally associates the Dirac equation with Minkowski space, 
we require that the metric tensor (2.7) be given by the Minkowski metric 

g,a = ( 1 , - 1 , - 1 , - 1 )  (2.8) 

This implies, using (2.4) and (2.7), that IXacPal 2 = 1. The equation 

a~a~ = e~l # c o  Aa c  ABD (2.9) 
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is seen to be identically satisfied using (2.3), (2.4) and (2.5). Following 
Parke & Jehle (1965), we may solve (2.9) for A% in terms of e~i. We get 

AAc =f~1%AD #cD exp (-ic 0 (2.10) 
with 

- -  eat (2.11) 
f a t  (Tr eat)l/2 

where Tr stands for trace. Thus, from (2.1) we get 

Xa = :t: fa l  a~f ~ crtA~ X8 exp (i~) (2.12) 
q% = • ~'aD (P~ exp (ic~) 

The :kis extracted from the right-hand side to explicitly show that Xa, (Pa 
are not determined in sign from e"i [see equation (2.4)]. ~,/3 indices are 
raised and lowered by the Minkowski metric ga/3 = (1 , -1 , -1 , -1 )  and /j 
indices are also raised and lowered by the Minkowski metric g~j = (1,-1, 
-1 , -1) .  We shall require that an c~,/3 Lorentz transformation induces the 
same Lorentz transformation on the i,j indices. Thus, there will be no 
distinction between the Greek and Latin indices, so we could write 
f~l  =f i t ,  as in Muraskin (1969). By expanding (2.12), we find that XA, ~0a 
are expressed in terms offt,j~ = �89 - f j i ) ,  f = f  11 + f  22 + f  33 + f  ~ and 
c~. Then, we have formally 8 fE,j~,fand c~ expressed in terms of 8 XA and ~a. 

is itself not a geometric field, since it is not given in terms of e~. We can 
look at the elimination of exp (i~) as a gauge transformation (see Appendix). 
We then get-~ 

XA -~ 4- f ~ l  aa Bb ~tAb ~B 
~v a = •  %Bo triAD ~B (2.13) 

Thus, in the geometric theory, the relation between spinors and the 
Maxwell tensor is a generalization of Klauder that involves the trace field. 

3. Tensorial Equations of  ra = 0 Dirac Equations 
We assume the mass zero Dirac equations for Xa, q~a 

o'iAB Oi XA = 0 
(3.1) #An ai %t = 0 

Inserting (2.13) into (3.1) gives the tensorial equation (El =ftlo~, E2 =ft2ol, 

E~ =ft30j, H, =f[231, H2 =.ft311, H3 =ft121) 
V . H = 0  

= -00 j V .  E 

V • E = -00 H (3.2) 

V x H = V f + 0 0 E  

-~ We assume that a gauge transformation is made when e # 0 and that the limit e ~ 0 
can then be taken. 
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Thus, we have obtained the Maxwell equations whose source obeys the 
empty space wave equation previously introduced in Section 1. We have 
obtained it from a geometric approach. From IxA~al 2 = 1 we get the con- 
dition 

f 4  f 2  
1--6 + 2-  (H2 --  E2) + E4 + H4 --  2Ez H2 + 4(E. H )  2 = 1 (3.3) 

Thus, the source of the Maxwell field is a fixed function of E and H. The 
case off--- 0 is seen from (3.3) to be an additional restriction on E, H. The 
fact t h a t f i s  real also, from (3.3), restricts the size of the E, H invariants. 

If  we attempt to impose the condition XAq9  a = 0 which we have used 
previously (Muraskin, 1969), we find from (2.7), (2.6) and (2.4) that g~s = O. 
Thus, the condition XA99 a =  0 does not lead to an acceptable geometric 
theory. Although the plane wave spinors obeying Xaq~ A = 0 are useful in 
finding solutions of the Maxwell equations (2.8) having 

E . H = 0  

f2__= E 2 - H z (3.4) 
4 

such spinors are not permitted in a geometric theory based on Xa, q~a. 

4. Summary o f  Mass Zero Problem 

We have thus obtained a tensorial representation of the mass zero Dirac 
equations by making use of a geometric approach. The tensor equations 
are independent of s c~a. They have a simple structure as contrasted with 
Ruse. The geometric approach leads to the source of the Maxwell equations 
being a particular function of E and H. 

We now go on to study the mass m Dirac equation. 

5. Mass m Dirac Equation 

The Dirac equation in terms of two 2-component spinors can be written 

a/(2) eka~ Ok ~o ~ = --imxa 
(5.1) 

~/(2) c? A~ a k XA = -imcp ~ 

The Dirac equation in terms of Xa, q~A takes the form 

C'(2) ~kaB Ok XA = --im~ ~ ~b 
(5.2) 

~/(2) CrkXB C aD O k q~D = imxt~ 

From (5.2) we get 
DXA ~ -m2 XA 

(5.3) 
E3q~A ~ --m z q"A 
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The variables XA, ~~ are related to the geometric variables by (5.3). Inserting 
(2.13) into (5.2) we get a tensorial Dirac equation 

V(2) akAS %cb a,A~ 2c Okf~l = --irne~ f ~, a~ E~ a'~1) ~d 
(5.4) 

~/(2) OkAB a~ cb al~b e AR ~C Ok f ~ = imf~  ~ Dd C~ID~ 2d 

The equations involve the arbitrary constant spinors 2A, ~A- We shall 
evaluate the equation for 

2 a =  ( ; )  and c~a= (01) 

We then get the following equations for E and H, 

V . H  = mE 3 

= - 0  o f + mH3 V.  E 

(V x E), = -0o HI + mHz 

( V  • E)2 = - - 0  0 H 2 - -  mill  

f (5.5) 
( V  X E)3 = - 0  0 H 3 - m ~- 

(V x H), = O, ~ + O0 E, + mE2 

(V x H)2 = 02 f + 00 E2 - mE, 

(V x H )  3 = 0 a f + 00E 3 

It can be checked from (5.5), or equivalently from (2.13) and (5.3), that 

Dft, j j  = -mZ fful 
(5.6) 

E] f = --mZ f 

In the limit of m ~ 0 (5.5) goes into the equations obtained previously (3.2). 
The equations (5.5) are not covariant if we consider only transformations 
on the tensor indices offvjv  This is because 2a and Cpa transform according 
to a unimodular transformation when the i, jindices are subject to a Lorentz 
transformation. In (5.5) 2A and Upa do not explicitly appear, and thus the 
equation (5.5) only takes on a superficial appearance of noncovariance. 

The equations (5.4) or (5.5) are rather clumsy, so one may ask whether a 
simple tensorial description can be obtained by our methods. We note that 
(5.6) is independent of 2A arid ~a. A spinor theory based on the Klein- 
Gordon equation (5.3) has been discussed by Marx (1967). In such a theory, 
we see that the tensorial equations have a particularly simple form given 
by (5.6). 
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6. Conclusions 
The Ruse formalism is a geometric formalism. That is, from XA, ~oA we 

can define the geometric variables e~i, gij,/~jk. In the geometric formalism, 
we can gain further understanding of the quant i tyf int roduced previously 
(Muraskin, 1969). We find that f is a prescribed function of E, H. The 
condition f =  0 is seen to be a restrictive condition on E, H. 

We have found that the tensorial representation of the m = 0 Dirac 
equation and the tensorial representation of the Klein-Gordon spinor 
equation takes on simple forms. The mass m Dirac equation, we find, does 
not take on a simple form. 

Appendix 
Under a gauge transformation with gauge function ~, we have 

(XA ) -+ ~b exp [ ic~(x) ] 

The gauge transformation on ~b implies 

Xa -+ XA exp [i~(x)] 
(A.1) 

~a ~ q~a exp [-i~(x)] 

l~, n~, m~, tfii are unchanged if 

~A -+ 99A exp [i~(x)] 
(a.2) 

Xa -+ Xa exp [i~(x)] 

(A. 1) and (A.2) are consistent if the spin metric behaves as follows, under a 
gauge transformation (since q~a = eA~ q~B) 

Ea, -+ EA, exp [2ia(x)] 
(A.3) 

c aB ~ E aB exp [-2i~(x)] 

The possibility for a phase function in the spin metric is mentioned by 
Parke & Jehle (1965). In addition, using X a =  EaBXB we get the gauge 
properties of X a 

X a -+ X A exp [-i~(x)] (A.4) 

Thus, we have that the geometric variables e~, are  gauge invariant. Also, 
the gauge transformation on Xa, q~a takes the form (A.2). 
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